skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bujarrabal, Valentin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The young and well-studied planetary nebula (PN) NGC 7027 harbors significant molecular gas that is irradiated by luminous, pointlike UV (central star) and diffuse (shocked nebular) X-ray emission. This nebula represents an excellent subject to investigate the molecular chemistry and physical conditions within photon- and X-ray-dominated regions (PDRs and XDRs). As yet, the exact formation routes of CO+and HCO+in PN environments remain uncertain. Here we present ∼2″ resolution maps of NGC 7027 in the irradiation tracers CO+and HCO+obtained with the IRAM NOEMA interferometer, along with SMA CO and HST 2.12μm H2data for context. The CO+map constitutes the first interferometric map of this molecular ion in any PN. Comparison of CO+and HCO+maps reveals strikingly different emission morphologies, as well as a systematic spatial displacement between the two molecules; the regions of brightest HCO+, found along the central waist of the nebula, are radially offset by ∼1″ (∼900 au) outside the corresponding CO+emission peaks. The CO+emission furthermore precisely traces the inner boundaries of the nebula’s PDR (as delineated by near-IR H2emission), suggesting that central star UV emission drives CO+formation. The displacement of HCO+radially outward with respect to CO+is indicative that dust-penetrating soft X-rays are responsible for enhancing the HCO+abundance in the surrounding molecular envelope, forming an XDR. These interferometric CO+and HCO+observations of NGC 7027 thus clearly establish the spatial distinction between the PDR and XDR formed (respectively) by intense UV and X-ray irradiation of molecular gas. 
    more » « less